All-at-once preconditioning in PDE-constrained optimization
نویسندگان
چکیده
The optimization of functions subject to partial differential equations (PDE) plays an important role in many areas of science and industry. In this paper we introduce the basic concepts of PDE-constrained optimization and show how the all-at-once approach will lead to linear systems in saddle point form. We will discuss implementation details and different boundary conditions. We then show how these system can be solved efficiently and discuss methods and preconditioners also in the case when bound constraints for the control are introduced. Numerical results will illustrate the competitiveness of our techniques.
منابع مشابه
A Low-Rank in Time Approach to PDE-Constrained Optimization
The solution of time-dependent PDE-constrained optimization problems is a challenging task in numerical analysis and applied mathematics. All-at-once discretizations and corresponding solvers provide efficient methods to robustly solve the arising discretized equations. One of the drawbacks of this approach is the high storage demand for the vectors representing the discrete space-time cylinder...
متن کاملA preconditioning technique for a class of PDE-constrained optimization problems
We investigate the use of a preconditioning technique for solving linear systems of saddle point type arising from the application of an inexact Gauss–Newton scheme to PDE-constrained optimization problems with a hyperbolic constraint. The preconditioner is of block triangular form and involves diagonal perturbations of the (approximate) Hessian to insure nonsingularity and an approximate Schur...
متن کاملTowards Matrix-Free AD-Based Preconditioning of KKT Systems in PDE-Constrained Optimization
The presented approach aims at solving an equality constrained, finite-dimensional optimization problem, where the constraints arise from the discretization of some partial differential equation (PDE) on a given space grid. For this purpose, a stationary point of the Lagrangian is computed using Newton’s method, which requires the repeated solution of KKT systems. The proposed algorithm focuses...
متن کاملInertia-Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization
Fast nonlinear programming methods following the all-at-once approach usually employ Newton’s method for solving linearized Karush-Kuhn-Tucker (KKT) systems. In nonconvex problems, the Newton direction is only guaranteed to be a descent direction if the Hessian of the Lagrange function is positive definite on the nullspace of the active constraints, otherwise some modifications to Newton’s meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 46 شماره
صفحات -
تاریخ انتشار 2010